" Deformation Gradient” (Con’d)

Example
Three line elements: dx, = X, dz, dz, = X, dy, de, = X, dz

Definition: dVp = (dz, x dx,) - dz, = (d X, x dX,) -dX,.dzxdydz
Calculation: dV = (dX, xdX,)-dX, = [(F-dx;) x (F -dz,)|-F-dz,

dV = detF (dz, x dx,) - dz. = det FdVj,

Conclusions

dV
and
det FF =1 if dV =dVj
' haric _hehavior (incomnrescihilitv condition)

O
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Relation between F' and u

with
X=x+u, Vegx=1 = VX =1I+Vu J

one gets
= (VX)' =I"+(Vu)' =1+ (Vu)' =F J
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Normal Strains

Line element in the reference configuration

de =dLm, (im|=1)

Line element in the actual configuration

dX = dim, (|m|=1, m #m)

Definition
_di—dL ﬂ _q
SR T T

Emm - Normal strain in the neighborhood of P in direction of m
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Green-Lagrange Strain Tensor

Square length of the line elements

di? =dX - dX =dX - F ! " F.-dX =dL’>m-F"-F-m

dl \?
(d—L) :m-FT-F-m:(amm—|—1)2zaﬁlm—l—kmm—l—l%kmm—l—l

1 1 1 1
emm = —m-FI.F-m—-—=-m-F'.F-m—-—-m-I-m
2 2 2
L
= m- §(F -F—I) -m=m-| G |-m
G - Green-Lagrange strain tensor )

144 /1
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Shear

Two line elements in the reference configuration

dz, =dL,n, de, =dL,p

Two line elements in the actual configuration

dX; =dlzn, dX; =dl;p

Shear strain

-
Ynp — 5 — Qpp

Some calculations
d X5 - dX5 = dl; dls cos any = dli dl sinyy,,
dXz  dX 5= (1+epp) (1 + epp)sinypp dLy, d L,
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Shear (Con’d)

Assumption
Ynp K 1 = 810 Ynp & Ynp J

(e MR ST e = (e S e e s it np

dX; -dX;=dx, F' - F.-dx,=dL,dL,n-F' - F.-p=~,,dL,dL,

with FT.F=2G+1

= Ynp=2n:-G:p
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Cauchy Strain Tensor

Linearization

G:%(FT-F—I)

F=I+(Vu)', FT =I+Vu

= %{[I—I—Vu]- [I—l—(VU)T] —I}
G = % I+ Vut (V)T + V- (Va)" 1]
G = % :Vu + (Vu)' +Vu- (Vu)T]

G ~ % [Vu+ (vuﬂ —¢
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Kinematics Basics of Kinematics

Components of the Cauchy Strain Tensor

normal strains

_ OJu ou ou

Exx = %? Eyy — 8_y’ Ezz = 5
shear strains

ou  Ou ou  Ou ou  Ou
Yy = P

+ o=y Yoz = o+ Yyr = +
TN i = 0z Ox Tyz 0z

corresponding tensor components
1 1 1

if}’my = Eay 5’}’3:2 = Exz; §7yz = Eyz

Note: € = &1

Holm Altenbach (OVG)
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Polar Decomposition

™ Q
|
®
13
=
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Stresses
Basics of Kinetics
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Classification of the External Loading

Types of loadings
@ Natural Models

@ body / mass / volume loading (forces, moments)
@ surface / contact loading (forces, moments)

Q@ In Addition, Two Artificial Loading Models

@ line loading (forces, moments)
@ single point loading (forces, moments)

Dimensional Analysis
@ [F|=N, [M]=Nm
@ body loading: per volume
@ surface loading: per area

@ line loading: per line
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Body Loading

Body force p (X, )k (VX,t) =kY(X,1)
By analogues p (X, 1)l (VX,t) =1V (X,t) body moment

Examples
@ weight force:
pk = —pges
@ inertia force:
pk=—pw x (wx X)

@ potential force:
pk =—pVII (Xt)

Holm Altenbach (OVG) Continuum Mechanics September R T 153 / 1



Stresses

Stress vector:
AN

t= lim ——

AA—0 AA

Couple stress vector:

Vi

Resultant force:

fR:/pde+/tdA

1% A

Resultant moment:

m§:/p(l+rxk)dV—|—/(M—l—rxt)dA
1% A

y

Holm Altenbach (OVG) Continuum Mechanics
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Stresses Definitions of Stresses

Stress Tensor

F
;
n ;
it
;

P
dA

Two vectors
t — stress vector

n — normal to the surface

Components of the stress vector

t = tnn+tt8t = tnn—|—tt1 €ty —|—tt2 €¢,

where t;, e, and t;, e, are arbitrary
tangential directions in the surface

nley,, nles,, e, ley,

so n, e and e, form an arbitrary
J orthonormal base

Cauchy’s Lemma
t(r,n,t)=n-T(r,t)

Holm Altenbach (OVG)
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Static Equilibrium and Dynamic Extension
Equilibrium (Static Case)

Only forces!

/pde—l—ftdA:O

v A
V/(rx;)k)dV—kA/(rxt)dA:O

Divergence theorem (GauB-Ostrogradsky)

/tdA:/n-TdA:fV~TdA — f(pk+V-T)dvzo
A A Vv %4

v

Local form

V- T+pk=0 < divI'+pk=0 <= 1;;;+ pk; =0;

|

Continuum Mechanics September 12th _ 18t 2011
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Static Equilibrium and Dynamic Extension
D’Alambert’s Principle

Only forces, but inertia is considered!

/pdeJr/tdA—/deV:O

1% A V

Divergence theorem (GauB-Ostrogradsky)

/tdA:/n-TdA:fV-TdA — = /(pk+V-T—pX) dV =0
A A | % %

>

Local form
VT +pk=pX <= Tyi+pk;=pX, J
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Stresses Classical and Non-classical Continua

Continuum Mechanics - Basics

@ cutting principle (method of sections)
@ axiom of reciprocal action (Newton's Third Law)

@ Continuum Mechanics governing equations
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Stresses Classical and Non-classical Continua

Continuum Mechanics - Non-polar

@ only force actions
@ symmetric stress tensor

@ only translations
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Stresses Classical and Non-classical Continua

Basic Course Engineering Mechanics

@ Static equilibrium
@ Forces
@ Moments
@ Dynamic equilibrium
o Balance of momentum
@ Balance of moment of momentum

@ Dependent or independent relations?2°

*Truesdell, C. (1964). Die Entwicklung des Drallsatzes. ZAMM
44(4/5):149-158
Continuum Mechanics September 12th

- 15th 2011
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Stresses Classical and Non-classical Continua

Continuum Mechanics - Polar

F
dM
dM
dF

@ symmetric and nonsymmetric stress tensors

@ force and moments actions

@ translations and rotations (independent!)
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Balances General Statements

Balances
General Statements J
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Balances General Statements

Basic Assumptions

Thermodynamics
@ Equilibrium Thermodynamics

@ Non-equilibrium Thermodynamics

)
4 Laws of Thermodynamics
@ 1%t Law — Energy Balance
@ 2" Law — Entropy Balance (Process Direction)
034 Llaw -0 =0K <= S=0
@ 4™ Law — Equilibrium of Systems |
State Variables
@ macroscopic
@ measurable
@ independent ]
167 / 1
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Balances General Statements

Phenomenological Variables

Extensive (Additive) Variables
@ e.g., proportional to the mass

@ example: inner energy, which depends only on the kinematics and the
temperature

Intensive Variables
@ e.g., not proportional to the mass

@ examples: density, temperature
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Balances General Statements

General Balance Equation

W (X ,t) and Yy(a,t) specific scalar properties distributed in dV or dVj

Integration over all body points results in Y (¢)

Y (t) = /Q/(X,t)dV: /L[/O(ae,t)d%

Vv Vo

With dV = (detF')dVj one gets Yy(x,t) = (detF)¥ (X, 1)

D D
V(1) = f (X, t)dV = qu(x,t)dA+f5(X,t)dv
A vV
Py =2 (v, t)dv = /qs (A / = e, )V
Dt Dt 0 @ = 0o\&L, 0 — 0\, 0
Vo Ao Vo
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Balances General Statements

General Formulation

¥ - balance variable

& - action through the surface (flux)
X - action onto the volume (surface)

S
S

(R,t)dV:f

A
/%(r,t)dVO:/ Bo(r.)dAo+ | Xo(r.t)dVe
Vo Ao

(R, t)dA + / X(R,t)dV
|4

Vo
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Balances General Statements

Comments Concerning the General Formulation

@ @ - action through the surface A, property of the surface A:
orientation n

bR, t)P(R,t) = DP(R,n,t)
@ Cauchy’s theorem is valid
M@(R, t)®(R,t) =n"V) . S(R,t)
@ actio = reactio
®(n) = —P(—n)
@ ¥, X tensor fields of the same rank n
@ @ tensor field of the rank n + 1
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Balances General Statements

Comments (Con’d)

@ formulation with respect to the mass
D D
— v t)ydm = — /4 t t)d
5 [ PR DdAn= o [ wR R0

@ from Gauss-Ostrogradsky

Ln-@)dA:fvv-(@)dv

@ local form

D
= () =V -8+ pX
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Balances

Balance equations are general principles for all processes.
@ mass

momentum

angular momentum

energy

¢ © ¢ ¢

entropy

Holm Altenbach (OVG) Continuum Mechanics September R T 175 / 1



Balance of Mass

Conservation of Mass

m = [p(P,t)dV = const

Integral form B D 8
V VO
D D 0
Local form o —(dm) = D —(pdV) = g —(po dVp) =0

Continuity equation

Dp

D
Dt—l—pV v=0 or —p+pdivv:0

Dt

Holm Altenbach (OVG) Continuum Mechanics September R T
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Balance of Linear Momentum

Integral form "

D
o [AX X0V = [o(X.0dA+ [p(XOFCX,0dV

174 A vV
Local form

p(X,t)%v(X,t) —V0(X,t) + p(X,)F(X,1)
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Balance of Angular Momentum

Integral form
D
= ﬁx < p(X,t)v(X,t))dV = ﬁX X 0 () (X, m,1)]dA
V

A
+ ﬁX x p(X,t)F(X,t)]dV
%

Considering the Balance of Momentum

V/(I-xa)dV—O

or the local form
I -xoc=0

This is the symmetry of the stress tensor condition 6 =o'
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Balance of Energy - Only Mechanics

1st Law of Thermodynamics - integral form

D 1
v

Local form
U =0 - (VXv)T —0o- D
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First Law of Thermodynamics

General Formulation

The changes in time of the total energy W within the volume is equal to
the heat flux ) and the power of all external loadings P,.

D
—W =P,
DtW +Q

U — inner energy

+ Wi K — kinetic energy

Holm Altenbach (OVG) Continuum Mechanics September R T 180 / 1



First Law of Thermodynamics (con’d)

Integral Formulation

1
K:—/v-vpdV

2
14
U:/udm:/pudV
m 14
P:ft-vdA+/k-vpdV t — surface traction
k — mass force

v

A
Q = /p?“d /n hdA
1%
D
mf(u—l— —v - v)pdV:/t-vdA+/k-vpdV:
14 A 1%
/n hdA—I—fpfrdV
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First Law of Thermodynamics (con’d)

Some Mathematical Manipulations

D D
= (“'):fﬁ )

|4 V

D (1 L o nbped)
Dt 2’0’0—2’0’0 V-V)=7D-v

/n-(T.vh)—V/[v-(T-v)v-h] dv

A

V(T-v)=(V-T)-v+T--(V-v)' =(V-T) - v+T--D
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First Law of Thermodynamics (con’d)

Local Form

Du
[ (5 +E) oov -
Vv
[ 09 o | | ]
Vv

v

The underlined terms —> balance of momentum

/(pia—T~D+V-h—pr) dV =0
V

T - -D-V -h+pr=0
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Second Law of Thermodynamics

Integral and Local Formulation

—/pst>]—pdV /—dA

The changes in time of the entropy within the volume under consideration
is not smaller then the rate of the outer entropy flux.

n-h h V-h h-VO
V V

A

%h-V@:h-Vln@

1
p@ézp'r—v-h—l—éh-V@

v
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Dissipation Inequality

2" Law
pOs —pr—V-h—h-VIn® >0

with respect to

Ve =h -VIne

@ V.
1% Law

ps=T--D—V -h+ pr

— pOs+T--D —ps+h-VInO >0 )
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Dissipation Inequality (con’d)

pOs = p(Os) — psO

D D
— pm((%s—u)—psD—(;)—l—T--D—h-VIn@ZO

Helmholtz’ Free Energy
u—0BOs=f

Df DO
oD — p—L _ pe—— _ h. >
— T --D PDr ~ P5 Dy h-VIn® >0

Dissipation Function
T--D—p(f+s®):@20) J
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Heat Flux and Temperature Field

h-VIn® >0 or £.v0 >0 with ©>0

@ h = 0 adiabatic process

@ VO = 0 isothermal process

h{@ @ non-dissipative process
=0

O3
2 T
1 Z(h,VO) > 5

O < 02 < O3 exception: orthogonality
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Heat Transfer

15t Law
D f DO

D
p@D—j:T--D—p(a—l—sﬁ)+pr—V-h:€P+pfr—V-h

@ non-dissipative process: ® = (
p@D—i = pr —V -h heat transfer

@ jsothermal process: no heat transfer, mechanical and thermal
processes are decoupled

@ adiabatic process: h =0, r=0
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Constitutive Equations
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Constitutive Equations Variety of Material Behavior

Stress-strain Curve for Low-carbon Steel

Stress
1

2

Strain

1. Ultimate strength, 2. Yield strength-corresponds to yield point, 3.
Rupture, 4. Strain hardening region, 5. Necking region

Hooke’s law is only valid for the portion of the curve between the
origin and the yield point.
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Stress-strain Diagrams of Various Metals

O" 1

e
€

1 hardened steel, 2 tempered (high yield) steel,
3 cast iron, 4 aluminium alloy, 5 pure copper
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Nonlinear Elastic Behavior

do
de

~ arctan &/

Example: cast iron, plastics
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Different Behavior at Tension and Compression

o

A
g
Sl
& g
m
g
o)
Y
steel cast iron
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Constitutive Equations Approaches

Constitutive Equations

Approaches
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Materials Physics

Material physics

is the use of physics to describe materials. It is a synthesis of physical
sciences such as chemistry, solid mechanics and solid state physics.

Solid-state physics

the largest branch of condensed matter physics, is the study of rigid
matter, or solids. The bulk of solid-state physics theory and research is
focused on crystals, largely because the periodicity of atoms in a crystal —
its defining characteristic — facilitates mathematical modeling, and also
because crystalline materials often have electrical, magnetic, optical, or
mechanical properties that can be exploited for engineering purposes.
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Constitutive Equations Approaches

Materials Science

Strocture

Properties

Processing

Performance

Holm Altenbach (OVG)

Materials science or materials en-
gineering is an interdisciplinary field
involving the properties of matter and
its applications to various areas of sci-
ence and engineering. This science in-
vestigates the relationship between
the structure of materials and their
properties. It includes elements of
applied physics and chemistry, as well
as chemical, mechanical, civil and
electrical engineering.
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Material Dependent Equations

@ Specific (individual) response of the given material on arbitrary
load.

@ Modeling principles

@ Inductive approach

from the simplest to more complex models
@ Deductive approach

from the general frame to special cases

@ ldentification

@ Experimental observations
@ Mathematical analysis
@ Theory of symmetry (Curie-Neumann'’s principle)
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Theory of Materials®®

Basic items
@ Formulation of suitable constitutive and evolution equations

@ Checking the correctness of the formulation and the adequateness to
thermodynamic considerations
@ Experimental identification of the parameters, etc.
v

Conclusions
@ Formulation of constitutive equations

@ Including material symmetries

@ Including constraints
=

26Haupt, P. Continuum Mechanics and Theory of Materials, 2nd edition.
Springer, Berlin, 2002
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Basic Definitions (1)

Definition
Constitutive equations connecting all macroscopic phenomenological
variables describing the behavior of the continuum.

Definition

Simple materials of the rank 1 are materials which are described bei
constitutive equations connecting local variables, e.g. the local strain
tensor and the local heat flux vector with the local stress tensor and the
local temperature gradient. All statements are related to the same
material point and its differential neighborhood of rank 1.

Definition
Process is the change of the constitutive parameters with respect of time.J
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Basic Definitions (I1)

Definition
Behavior of the continuum in each material point is given as a set of
constitutive variables which are operators with respect to time.

Definition
Solid is a material behavior if at given loads the stress deviator has
non-zero components, that means it shows resistance if the shape is
changing.

Definition
Fluid is a material behavior if at given loads the stress deviator has only
zero components, that means it not preserves the shape.
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Axioms of the Materials Theory

Causality
Determinism

Equipresence

Local action

9

9

9

@ Material objectivity
9

@ Memory

Q

Physical consistency
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Constitutive Equations Examples

Simple Thermomechanical Material

General Form

ho(m t) = hg {:13 (ac,t),@(m t),Vgb(x,t), Vgb(x,t),I'(x,t)}
( £Z, ) =4 3 {ZB (a:,t),(?( )1V$9($:t)?v$9(wat)ar(w t)}
Replacement of I'
P((L‘,t) = {3339,9', V-’E‘gavfﬂéacacap—lap}
h[)(ﬂ'),t) = h {wagaea V:ce,Va:Q,f,C,P_l,ﬁ}
f(:c’t) = f {213,9,9., Vmeavﬂﬂeacac_}ap_lﬂé}
s(z,t) = s {x,0,0,Vgh Vgd C,C,p L p}
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